Advancing the understanding of the embryo transcriptome co-regulation using meta-, functional, and gene network analysis tools.
نویسندگان
چکیده
Embryo development is a complex process orchestrated by hundreds of genes and influenced by multiple environmental factors. We demonstrate the application of simple and effective meta-study and gene network analyses strategies to characterize the co-regulation of the embryo transcriptome in a systems biology framework. A meta-analysis of nine microarray experiments aimed at characterizing the effect of agents potentially harmful to mouse embryos improved the ability to accurately characterize gene co-expression patterns compared with traditional within-study approaches. Simple overlap of significant gene lists may result in under-identification of genes differentially expressed. Sample-level meta-analysis techniques are recommended when common treatment levels or samples are present in more than one study. Otherwise, study-level meta-analysis of standardized estimates provided information on the significance and direction of the differential expression. Cell communication pathways were highly represented among the genes differentially expressed across studies. Mixture and dependence Bayesian network approaches were able to reconstruct embryo-specific interactions among genes in the adherens junction, axon guidance, and actin cytoskeleton pathways. Gene networks inferred by both approaches were mostly consistent with minor differences due to the complementary nature of the methodologies. The top-down approach used to characterize gene networks can offer insights into the mechanisms by which the conditions studied influence gene expression. Our work illustrates that further examination of gene expression information from microarray studies including meta- and gene network analyses can help characterize transcript co-regulation and identify biomarkers for the reproductive and embryonic processes under a wide range of conditions.
منابع مشابه
I-13: Transcriptome Dynamics of Human and Mouse Preimplantation Embryos Revealed by Single Cell RNA-Sequencing
Background: Mammalian preimplantation development is a complex process involving dramatic changes in the transcriptional architecture. However, it is still unclear about the crucial transcriptional network and key hub genes that regulate the proceeding of preimplantation embryos. Materials and Methods: Through single-cell RNAsequencing (RNA-seq) of both human and mouse preimplantation embryos, ...
متن کاملUsing the Protein-protein Interaction Network to Identifying the Biomarkers in Evolution of the Oocyte
Background Oocyte maturity includes nuclear and cytoplasmic maturity, both of which are important for embryo fertilization. The development of oocyte is not limited to the period of follicular growth, and starts from the embryonic period and continues throughout life. In this study, for the purpose of evaluating the effect of the FSH hormone on the expression of genes, GEO access codes for this...
متن کاملIdentification and Functional Prediction of Long Non-Coding RNAs Responsive to Drought stress in Lens culinaris L.
Drought stress is one of the main environmental factors that affects growth and productivity of crop plants, including lentil. In the course of evolution evolution, crucial genetic regulations mediated by non-coding RNAs (ncRNAs) have emerged in plant in response to drought and other abiotic stresses. In the present study, after identifying lncRNAs within the expression profile of lentil, RNA-s...
متن کاملAssociation between the Functional Polymorphism of Vascular Endothelial Growth Factor Gene and Breast Cancer: A Meta-Analysis
The vascular endothelial growth factor (VEGF) gene single-nucleotide polymorphism involved in the regulation of the protein levels has been implicated in breast cancer. However, the published studies have produced contentious and controversial results. Herein, we performed a meta-analysis (from January to October 2013); to further evaluate the association between +936 C/T polymorphism and the r...
متن کاملNetwork-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes
Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Reproduction
دوره 135 2 شماره
صفحات -
تاریخ انتشار 2008